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The dual transformation applied to implicit finite difference approximations of the 
Navier-Stokes equations reduces the number of unknowns by a factor of three, removes the 
pressures from the discrete equations and produces velocities which satisfy the discrete 
continuity equation exactly. New iterative methods for the solution of the unsymmetrical dual 
variable system are developed and are proven to converge for a large class of problems. These 
iterative methods involve a sequence of discrete Laplacian systems whose solutions converge 
to the solution of the dual variable system. They take advantage of the special structure of the 
dual variable coefficient matrix, are very fast compared to the direct methods currently used, 
are less memory intensive and can be more easily vectorized and parallelized. f, 1991 Academic 

Press, 1°C. 

1. INTRODUCTION 

The dual variable method was introduced by Amit, Hall, and Porsching [Z] for 
certain finite difference schemes applied to the Navier-Stokes equations. This 
method eliminates pressure from the computations and, for 2D problems, reduces 
the number of active variables in the system to roughly one-third the original num- 
ber. The dual variable method has been extended to finite element analyses [ 191, to 
three dimensions [25], and to compressible fluid problems [7]. It has been success- 
fully used by a variety of authors, for example, to model cavity flows [6, 12, 14, 261 
and thermally driven flows in reactor components [ 10,203. A key element of the 
implementation of the dual variable method is the construction of a null basis, a 
subject which has received much attention recently both in fluid and structural 
mechanics [4, 5, 8, 15, 16, 221. 

The direct solution of the dual variable system requires less storage and com- 
putation time than the discrete primitive system. Iterative methods are generally 
faster and less memory intensive than direct methods for problems for which they 
are applicable; however, the dual variable system has previously always been solved 
by direct techniques because convergence of even such standard iterative methods 
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as SOR could not be guaranteed except in some very restrictive cases. This paper 
presents new iterative methods, which can be proven to converge to the solution for 
a large class of problems. They take advantage of the special structure of the dual 
variable coefficient matrix, are very fast compared to the direct methods currently 
used, are less memory intensive and can be more easily vectorized and parallelized. 

1 .l. The Primitive Equations 

The basic equations used to model fluid flow are the two-dimensional time- 
dependent Navier-Stokes equations. The equations are simplified by assuming 
incompressibility, and a constant viscosity. The equations are the continuity 
equation (conservation of mass): 
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and the momentum equations (conservation of momentum): 
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where u is the horizontal component of velocity, v is the vertical component of 
velocity, p is the pressure, p is the density, p is the coefficient of laminar viscosity, 
g(cos(a), sin(a)) is the gravitational vector, and fi and f2 are position-dependent 
friction factors. 

Equations, (1 t(3), hold over a finite time interval 0 6 t d T and on a rectangular 
domain, Q, with boundary X?. Internal blockages and non-rectangular domains 
were handled explicitly in [ 1, 2, 10, 18, 201; however, they can also be handled by 
introducing resistance terms in the momentum equation through fi and f2. 

The initial values for u and v for the above equations are given by 

4% YY 0) = %3(x, Y) 

v(x, yv 0) = v,(x, Y). 
(4) 

It is not necessary to specify the initial pressures since the dual variable transforma- 
tion eliminates them from consideration. 

The boundary conditions are specified on segments of the boundary 852. On a 
given segment, one of the following hold: (i) pressure specified, (ii) normal and 
tangential velocity specified, or (iii) normal velocity specified to be zero and the 
normal derivative of tangential velocity across the boundary segment is zero. 
Condition (ii) corresponds to a non-slip wall when the values are taken to be zero, 
while (iii) corresponds to a free-slip wall. 
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We now consider the stream function transformation of Eqs. (1 )-( 3). Introducing 
the stream function, II/, enables one to eliminate the continuity equation and solve 
the resulting momentum equation directly for the single variable II/. The stream 
function IJ is defined such that 

and (5) 

With this definition of IJ~, the mass velocity vector q = (pu, po) = (a$/ay, -@/ax). 
Note that (5) is consistent with the continuity equation since 

Finally, taking the curl of the momentum equation yields 

5 & (V’$) - 2 -& (V2tj) - v V’(V’$) = curl(F), 

where v = p/p is the kinematic viscosity, F = (F,, F2) and the curl is defined by 
curl(h,,h,)=ah,/ax-ah,/ay. 

Equation (6) is a scalar equation in just one variable, $. Moreover, use of the 
stream function obviates the need for the continuity equation. Thus the system of 
three equations, (1 t(3) is reduced to a single equation. In the process, the 
pressures have been eliminated and the mass velocities can be recovered in a 
straightforward way from (5). There are, however, some disadvantages. First, 
Eq. (6) contains third- and fourth-order derivatives. The finite difference 
approximations to these terms produce a very complicated coefficient matrix which 
is far less sparse than those arising from (1 b(3). Also, in order to uniquely solve 
(6) there is a need to impose auxiliary boundary conditions for the stream function. 
Properly selecting and enforcing these boundary conditions is generally more 
difficult than handling the boundary conditions introduced for Eqs. (1 k(3). 

1.2. The Discrete Primitive Equations 

It is possible to parallel the transformation to stream functions in the discrete 
case. We start with the discrete formulation of the primitive variable equations. 

Consider Q to be a rectangle in the x’, y/-plane given by Sz = [0, a] x [0, b] for 
some a, b > 0. We overlay it with a mesh of lines given by x’ = x(, 1~ i < n and 
y’= yj’, l< j<m, where O=xb<x;< ... <xi,=a, O= yb< y’,< . . . < yk=b. The 
center of each mesh box (flow cell) is called a node and is located at (xi, yi), where 
xi=(xl+x;+i)/2, and yj=(y,‘+yJ+,)/2. 

The MAC placement of variables [ 10, 21, 281 is used; see Fig. 1. The discrete 
pressures approximate the true pressure at each node (center of mesh box) while 
the true mass-velocities are approximated by the discrete mass-velocities at the 
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FIG. I. Location of discrete variables. 

midpoints of the mesh box sides. At time level k in cell centered at (xi, yj), let 
Pej~p(xi,yj,kdt), U:j~pp~(x:+,,y,,kdt), and V~j”~.t~(~i,y~+,,kdt). 
Defote ;he discrete pressure vector at time level k by: pk = (p:, pi, . . . . p”,) = 

Pk ) and denote the discrete velocity vector by: Wk = 
;$f; ;;;;..;-&yz (u; 2 Uk 2.3, . . . . Vf: “,), where N is the number of unknown 
pressures and L is the number of unknown velocities. L is larger than N; for two- 
dimensional problems L z 2N. 

The implicit difference equations are given in Appendix A. The continuity equa- 
tion is discretized using centered differences. The momentum equation is discretized 
by using backward time differences for the temporal term, centered differences for 
the viscous and pressure gradient terms, and upwind differences for the convection 
term. The convection term is linearized by time-lagging the velocity. These equa- 
tions are fully implicit and have no theoretical time-step restriction. 

With these conventions, the equations can be written in matrix-vector form as 

the discrete continuity equation, 

AwkC’=sk 

the discrete momentum equation, 

(7) 

(8) 
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where wk + ’ = D, Wk+ I, the diagonal matrix D, is given in Appendix A and the 
vectors sk and b’f contain the boundary information and source terms. The N x L 
matrix A is the discrete divergence operator acting on the space of velocity vectors 
and its transpose is a discrete gradient for the space of pressures [Z, 261. Qk is the 
L x L matrix coefficients of the velocity terms of the momentum equation. 

1.3. Dual Variable Transformation 

The transformation from primitive variables to a stream function in the con- 
tinuous case can be paralleled in the discrete case by constructing a discrete analog 
to the curl operator. The crucial properties of the curl that were used in the deriva- 
tion of the stream function equation are that div(curl(G)) = 0 for all G in C’ and 
that curl(grad(g)) = 0 for all g in Cl. For the discrete case, this translates into the 
requirement that a matrix, C, be constructed such that AC = 0 and CTA ’ = 0. Such 
a matrix always exists. It can be constructed by choosing its columns as a basis for 
the subspace of L-dimensional Euclidean space, RL, orthogonal to the subspace 
spanned by the columns of AT. 

In practice, it is easy to construct both A and C by the use of graph theory; 
see [2, 3, 7, 10, 18, 20, 261. Goodrich and Soh [14] have given an alternate, but 
equivalent, construction of the matrix C. For MAC-type meshes, A and C can be 
constructed so that rank(A) = N and C is an L x (L-N) matrix of rank L-N. 

Let vi+’ be any vector in RL which satisfies 

AVk+‘=Sk. 
0 (9) 

The vector vi + ’ is called a particular solution of the continuity equation. Note that 
for incompressible flows and time independent boundary conditions, vt+ ’ is 
independent of time and hence k. See [20] for thermally expandable problems 
where this is not the case. Since A wk+ ’ = sk, 

Wk+l=Z+V; (10) 

is the general solution of the continuity equation, where AZ = 0. We now seek 
the unique vector z that satisfies the momentum equation as well. Since 
z E Nullspace = Range(C), z = Cx for some x E RL- N. Next, we modify the 
momentum equation using (10) to obtain 

where bk = bt - Q”vt. 

(11) 

Finally. take the discrete curl of Eq. (11) and replace z by Cx to arrive at the 
dual variable system: 

CrQkCx = CTbk. (12) 

The vector x is called the discrete stream function or vector of dual variables. 
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Once the dual variable system (12) is solved for the dual variables, the velocities 
can be recovered at almost no cost from the formula: 

W k + ’ = cx + v;. (13) 

After the velocities have been recovered, the calculation of the next time level 
solution proceeds with the construction of a new particular solution from (9) (if 
needed), the construction of Qk+ ‘, the formation and solution of the new dual 
variable system, and the recovery of the new velocity field. The pressures are not 
needed for time-step advancement; they have ceased to be a problem variable. Also, 
the continuity equation (7) has been replaced by (9) which is decoupled from the 
momentum equation (8). Moreover, (9) requires very little computational work, 
reducing essentially to back-substitution of a sparse triangular system via the use of 
a spanning tree [2, 201. 

There are many advantages to the dual variable method. The dual variable trans- 
formation does not place any special restrictions on the continuity equation. It does 
not require boundary conditions other than those needed for the discrete system of 
Eqs. (l)-(3). The continuity equation is satisfied exactly: 

Awk+‘=ACx+Av;=sk. (14) 

Also, the discrete system (7))(8) in three unknown vectors (pressure, horizontal, 
and vertical velocity) have been reduced to a system with just one unknown vector 
(discrete stream function). There are at most one-third as many discrete variables 
in (12) as were contained in (7)-(8); this sizable reduction in system size produces 
a large reduction in solution time. 

The main disadvantage of the dual variable transformation is the structure of the 
coeflicient matrix which we now examine. 

The matrix Qk in (8) results from a five-point stencil for both the horizontal and 
the vertical velocities; the five-point stencil arises from the usual centered difference 
approximation of the Laplacian and the upwind approximations to velocity 
gradient terms. As such, Q” is block tridiagonal, and the diagonal blocks are them- 
selves tridiagonal. Qk is reducible since there is no connection between the equa- 
tions of horizontal mass velocity and vertical mass velocity. Qk is also an M-matrix 
(and hence non-singular) and is strictly diagonally dominant when a uniform mesh 
spacing is used [27]. However, Q” is not symmetric due to the convective terms. 
The fact that Qk is an M-matrix is enough to guarantee the convergence of Jacobi 
and SOR methods when applied to any system of equations whose coefficient 
matrix is Qk [31]. Unfortunately, (8) also involves the unknown pressures. 

The matrix C can be constructed from graph theory; first we describe the graph 
and its key features. Consider the nodes of the MAC grid to be the nodes of the 
graph. Connect adjacent nodes via directed horizontal and vertical line segments; 
the horizontal segments are directed to the right and the vertical ones are directed 
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upwards. These line segments are the links of the graph. Note that the links pass 
through the points where the unknown mass velocities are approximated. A path of 
a graph starts at any node and continues to any other node along a sequence of 
links regardless of their orientation but each of which is connected to the previous 
link at one of its endpoints and to the next link at the other. A cycle is a path which 
begins and ends at the same node and a country is a cycle that contains no nodes 
or links in its interior [3]. In our graph, most countries are cycles with four nodes 
and four links and have a rectangular shape (see Fig. 2). When a pressure is 
specified at a node on the boundary, the link which connects it to the adjacent node 
inside the region is associated with an unknown velocity. If more than one such 
pressure specification is made, a pseudo-country is formed; it is the shortest path 
between two specified pressure nodes. A pseudo-country is considered a special 
kind of country and may consist of less than four, four, or many more than four 
links and nodes (see, for example, [ 1, 2, 10, 183). 

The pth column of C, cP = (ci, P, c2, P, . . . . cL _ N, p)T, corresponds to the pth coun- 
try, Qp, and is defined by traversing GP in a counterclockwise manner. Define 
ci,,=OiflinkjisnotinQP,cj,,= 1 if link j is in 52, and its direction coincides with 
the direction it is traversed, and cj, p = - 1 if link j is in Sz, and its direction is 
opposite to the direction of traverse. The fact that this matrix satisfies AC = 0 and 
has full rank is proven in [3]. 

The matrix Q“ represents the velocity-to-velocity momentum coupling or the 
link-to-link coupling; the non-zero entries of row i of Q” are in the columns of the 
velocities coupled to wi through the finite difference scheme. The matrix C 
represents the link-to-country coupling; the non-zero entries of row i of C are in the 
columns corresponding to the countries in whose boundary link i lies. Similarly, 
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FIG. 3. The 13-point stencil for regular countries. 

CTQk is the country-to-momentum-neighbor coupling matrix; if (CTQk)r,, is non- 
zero, then either link j lies in the boundary of country i or it is momentum-coupled 
to a link in the boundary of country i. CTQkC is the country-to-country coupling 
matrix; if (CTQkC)i,j is non-zero, then either country i and country j share a link, 
or there is a link in country i which is a momentum-neighbor to a link in country 
j. This last observation establishes that CTQkC corresponds to a 13-point stencil for 
regular countries. In Fig. 3 the momentum couplings involved in the country 
couplings for country (I, J) are darkened and the sign of (CTQkC),,, is also given. 

Even though Qk is non-singular and C has full rank, it is not guaranteed that 
CTQkC is non-singular. However, it was shown in [2] that whenever (7)-(g) has 
a unique solution, so too does (12) and vice versa. 

The main disadvantage of the dual variable procedure is the structure of the coef- 
ficient matrix. Even for a flow region Sz with no blockages, the non-zero entries of 
CTQkC follow the same pattern as the discrete biharmonic, but the matrix is 
neither symmetric, diagonally dominant, non an M-matrix. It has none of the well- 
known properties which guarantee convergence for the usual iterative techniques 
~271. 

For regions Sz with blockages, there are two standard methods to handle the 
obstacles, both of which add further difficulties. The first is to remove the pressures 
and velocities within the obstacle from consideration as problem variables, [ 1, 2, 
121. This has the effect of producing a very large country corresponding to the 
smallest cycle with surrounds the obstacle. It also destroys the banded structure, 
creating instead a coefficient matrix that is bordered-banded. An alternative is to 
place large resistances to the flow of the fluid through the blockages by use of 
friction factors fi. This latter approach generally results in a very ill-conditioned 
dual variable system (12). 
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2. SOLUTION METHODS FOR THE DUAL VARIABLE SYSTEM 

2.1. Existing Methods 

Direct methods have been used exclusively to solve Eq. (12). The inherent 
limiting factor to a direct solution method is the large amount of memory required. 
For regions without blockages, Gaussian elimination (banded or profile) with partial 
pivoting appears to work well. However, for regions with blockages, the matrix is 
no longer banded, but border banded and the border may be quite large. Such 
systems can be solved very efficiently by special direct techniques [30] which both 
vectorize and parallelize. However, these techniques are inefficient for problems 
arising from regions without blockages. Some direct methods apply equally well to 
both flow region geometries. The dual variable system has been solved by full- 
matrix Gaussian elimination with partial pivoting [6,25], but for problems of even 
moderate size the in-core storage and computation costs become prohibitive. 
Straightforward implementation of Gaussian elimination using peripheral storage 
reduces the in-core storage problem, but increases the runtime costs due to 
excessive communication between devices. To make effective use of peripheral 
storage, the frontal method [24] has been applied in the dual variable computer 
code DUVAL [l, 7, lo] and has been used to solve transient problems with up to 
6400 flow cells on a CRAY/XMP. The reverse Cuthill-McKee algorithm was used 
to minimize the bandwidth of the banded portion of the dual variable system and 
optimize its profile. Moreover, with the frontal method, blockages add no further 
computational complexity to the solution procedure. That is, the border they 
generate is absorbed into the active matrix as the country associated with the 
blockage is encountered. Once the blockage is isolated behind the front, the border 
columns are eliminated. Thus the frontal method effectively handles the matrix as 
if it has no border. Finally, though frontal methods are slower in real time than 
in-core Gaussian elimination variants, because of the reliance on slower peripheral 
storage devices, for very large problems an in-core method is not a viable alter- 
native, [ 11. 

The anticipated payoff for using iterative methods instead of direct methods is 
reduced storage and reduced computation time. For example, for a square region 
with n dual variables in each row and column, CTQkC has a bandwidth of 2n. Thus 
to store the matrix, full-matrix Gaussian elimination uses O(n4) memory locations, 
a banded Gaussian elimination solver requires at least 0(4n3) memory locations, a 
frontal solver such as implemented in DUVAL uses O(16n2) in computer memory 
plus pheripheral storage and a point iterative solver needs 0(13n2). 

Unfortunately, the dual variable system (12) does not possess the properties 
which guarantee convergence for the standard iterative methods. It is neither 
diagonally dominant nor an M-matrix; therefore the usual iterative methods, 
namely the point and block forms of Jacobi, Gauss-Seidel, and SOR, cannot be 
guaranteed to converge. The coefficient matrix is also neither positive definite 
symmetric nor symmetrizable (a matrix B is symmetrizable if there exists a positive 

581/96/l-6 



80 MESINA AND HALL 

definite matrix Z such that ZB is positive definite symmetric). Therefore the 
classical conjugate gradient (CG) method [23] cannot be applied to (12). 

One can always use the normal equations, 

(C’Q’C)’ (CTQkC)x = (C’Q”C)’ CTb, (15) 

which are automatically positive definite symmetric. There are several forms of CG, 
called CGN, which apply CG to (15) without actually forming the system. The 
main problem with using the normal equations is that the two-norm condition 
number of the normal equations is the square of the condition number of the 
original system (12); so that a large condition number in the dual variable system 
implies an enormous condition number in the normal equations. Ill-conditioning 
leads to extra iterations in any iterative method and the potential extreme ill-condi- 
tioning of the normal equations makes their direct use undesirable. 

There are many generalizations of CG, among them, ORTHOMIN(k) can be 
shown to solve the system if the matrix Q is PDR (positive definite real) [27]. By 
use of a preconditioning matrix, the CG methods can be made to converge faster. 
However, the preconditioning matrix can be viewed as a matrix of parameters and 
a good choice of these parameters is not known a priori and may change with each 
time-step. 

Multigrid is another popular iterative method for solving linear systems of equa- 
tions arising from Navier-Stokes type equations including primitive systems such as 
(7)-(8). For a review of this literature, see [26]. This literature is not directly 
applicable here since it does not deal with the dual variable system, rather the 
primitive system or other formulations. It is very likely that the basic iterative 
schemes presented in the next section can be accelerated through the use of multi- 
grid techniques. However, this topic is not pursued further in this paper. 

Any iterative method applied to the primitive system (7)-(8) will yield a velocity 
field that only approximately satisfies the discrete continuity equation. In contrast, 
any iterative method applied to the dual variable formulation (12) yields velocity 
fields that satisfy the discrete continuity equation exactly. This is an inherent 
property of the dual variable formulation. 

The object of the current research was to construct a robust iterative method for 
the dual variable system which could be shown to converge for a large class of 
problems. 

2.2. New Iterative Methods 

This section reports on several iterative methods for the solution of the dual 
variable method that were developed and analyzed in the dissertation [27]. The 
central idea behind these new iterative methods is to take advantage of the struc- 
ture of CTQC and a splitting CTQC= P-R such that P can be inverted quickly 
and efficiently and such that the overall resulting iteration can be proven to 
converge for a large class of problems. This splitting leads to the iterative method 

Pxk+’ = Rxk + P-b. (16) 
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Equation (16) is called the inner system; it must be solved on every step of the 
iterative procedure. 

To reduce and simplify notation, we establish the following definitions: Let 

Q=QD-QL-QLI, (17) 

where Q,, := diag(q,,, qz2, . . . . qLL), QL is strictly lower triangular, and Q, is strictly 
upper triangular. The matrix of off-diagonal terms, F := Qb - Q is split as F= 
F, + F,, where F, contains only the off-diagonal stress terms of Q, and F, contains 
the off-diagonal convective terms of Q. Note that F= QL + Qu. With these defini- 
tions we derive several methods. 

2.2.1. The Stress-Convection Method 

Splitting the off-diagonal matrix, F, into a matrix containing the stress terms and 
a matrix containing the convective terms gives 

CTQCx = CT(Q,, - Fs - F,) Cx = C=b. (18) 

For uniform mesh-spacing, Fs is symmetric. Keeping the matrices which are 
symmetric, in the uniform mesh-spacing case, on the left produces the following 
iterative method: 

C’(Q,- F,) Cx”+’ = CTF,Cx”+ CTb. (19) 

This method is called the stress-conuection method because all the viscous stress 
terms are in the splitting matrix and all the convective terms appear on the right 
side of Eq. (19). C’(Q, - Fs) C is invertible [27]. The form of the iteration matrix 
G,, given in Table I, now follows from inverting Eq. (19). 

2.2.2. The Transformed Jacobi Method 

This method comes from splitting the matrix Q as in (17) and then applying dual 
variable transformation: 

CTQCx = CT(Q, - QL - QU) Cx = CTb. 

TABLE I 

Iteration Matrices for the New Iterative Methods 

Stress-convection Gs=[CJ(Qo-F,)C]-‘C’F,.C 
Transformed Jacobi G,=(C’Q,C)-‘CTFC 
Scaled Laplacian Gd=(dCTC)-I CT(dI-Q)C 
Transformed SOR G,,=C~J(Q,-~Q,)~l-'~TC~Qu+(~-~)Qol~ 
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Just as with the standard Jacobi method, this leads to the iteration: 

CTQ&xtI+ ’ = CT(QL + Qu) Cxn + CTb 

= CTFCx” + CTb. (21) 

Since C has full rank and Q, is a diagonal matrix of positive entries, (C’Q,C) is 
positive definite symmetric and hence invertible. This is the trarwformed Jacobi 
method. 

2.2.3. The Scaled Laplacian Methods 

These are obtained in exactly the same way as the transformed Jacobi methods 
except that instead of using Q = Q,, - F, the splitting Q =dI- (dl- Q) is used. 
Hence we have 

dCTCx”+ ’ = CT(dZ- Q) Cx”+ CTb. (22) 

This is a regular splitting of Q only when (dl- Q) is a non-negative matrix. For 
d= 1, the scaled Laplacian method becomes the transformation of Richardson’s RF 
method. If the diagonal matrix Q,, is a scalar matrix, sZ, the scaled Laplacian 
method with d=s and the transformed Jacobi method are identical. The method 
takes its name from the fact that dCTC is a scalar multiple of the discrete Laplacian 
matrix, the matrix obtained by using second-order centered differences to 
approximate the Laplacian. 

Note that the sequence of inner systems (16) produced by the scaled Laplacian 
method (22) is, in essence, a sequence of discrete Laplace systems whose solutions 
will be proven to converge to the solution of the Navier-Stokes dual variable 
system. 

2.2.4. The Transformed SOR Method 

We first scale the dual variable equation by o and then split Q as in (17) to 
obtain 

-wCTQ,Cx=oCTQ,Cx-oCTQ,,Cx+wCTb. 

Adding CTQ,Cx to each side yields 

CT(Q,, - oQL) Cx = CT[uQu + (1 - o)Qo] Cx + oCTb. (23) 

It is shown in [26, 271 that the matrix C’(Q, - wQL)C is nonsingular for any 
choice of w E [0, 11. The nonsingularity of CT(QD - oQ,j C can be extended to o 
in a neighborhood of 1 by a continuity argument. 

The methods in Table I were tested [27] on a Poiseuille flow problem along with 
point Jacobi, point Gauss-Seidel, and point SOR and several other methods. 
Among the methods not listed in Table I, only SOR and Gauss-Seidel converged 
for the entire range of test parameters which included various time steps and 
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Reynolds numbers. The unsuccessful methods are not presented here; see [27]. 
Also, the point methods were found to be inferior for this simple problem for the 
following reasons. First, for the 13-point stencil, the point Jacobi and the point 
SOR methods require the unknowns to be reordered according a three-color 
scheme in order to vectorize. Because of this, the inner loops are shortened which 
reduces the vectorization benefit for problems with less than 192 dual variables on 
a side of the region. Second, they used significantly more iterations than the other 
convergent methods. The relative merits of the new methods are discussed below. 

The stress-convection method requires the solution of a system whose coefficient 
matrix has 13 non-zero entries per row and is PDS in the special case of uniform 
mesh-spacing. The matrix CTQC itself has only 13 non-zero entries per row, but is 
not symmetric. If the system (18) is PDS, then special techniques can be used for 
its solution. Note that C’(Q, - F,)C= - CTFsC+ CTDC, where D is a diagonal 
matrix of positive entries, and - CTFsC is a positive multiple of the discrete 
biharmonic operator. In general, the coefficient matrix is not PDS and it requires 
as much work to solve as the dual variable system (12). Hence it appears that this 
iteration is useless in the general case. The storage for C’(Q, - F,)C is much 
larger than for any of the coefficient matrices of the other methods which have at 
most live non-zero entries per row. Furthermore, one must store both F, and 
F, instead of just the matrix F. Finally, as the viscosity approaches zero, the 
stress-convection iteration matrix reduces to the transformed Jacobi iteration 
matrix and the two methods exhibit similar convergence rates. However, the former 
is more costly. 

In experiments with the Poiseuille flow, this method was vastly superior to all the 
other methods tested relative to the number of iterations required to meet a certain 
convergence criteria and relative to the asymptotic convergence rate. This is not 
surprising since the analytic solution of the Poisueille flow has no convective effects. 

Another method that is hard to implement is the transformed SOR method. 
Unlike the related methods, SOR and block SOR, the matrix on the left side of the 
iteration (23) is not block lower triangular. In fact, this matrix has non-zero super- 
diagonals. There is no simple method to solve a system with this coefficient matrix 
except Gaussian elimination. While the amount of work required to solve this 
system is less than solving the dual variable system itself, it requires the same order 
of magnitude of arithmetic operations. Furthermore, both the transformed Jacobi 
and scaled Laplacian methods can be accelerated to obtain convergence rates that 
are comparable to the best that this method can be expected to produce. See 
Section 2.4. 

The transformed Jacobi was the second best among methods tried on the 
Poiseuille flow problem relative to the number of iterations required to meet a 
certain convergence criterion and relative to the asymptotic convergence rate. 
Additionally, there are a variety of means available to accelerate the convergence 
of this basic method which are discussed in Section 2.4. This method requires the 
solution of a discrete Poisson equation, which can be handled very efficiently 
[9, 16, 303. The matrix, P = CTQ,C, with five non-zero diagonals must be stored; 
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this is more than for the point methods, but not a great deal more if the solution 
of the inner system is carried out by iterative means. Finally, the method vectorizes 
extremely well and parallelizes if the solver of the inner system 

(24) 

parallelizes. The matrix is also a positive definite symmetric M-matrix and so all 
methods based on regular splittings, such as point and block Jacobi and SOR, are 
convergent for (24). ADI is also well suited to solve the system, since the system is 
block tridiagonal with main diagonal blocks which themselves are tridiagonal. The 
inner system (24) also yields to solution by reduced system conjugate gradient, 
RSCG, which is available in the highly reliable commercial package ITPACK. 

The scaled Laplacian methods were not tested in the Poiseuille flow study, but 
are very similar to the transformed Jacobi method, both in performance, storage, 
vectorization and acceleration possibilities. The inner system (24) of the scaled 
Laplacian method has P = dCTC. It was already pointed out that dCTC is a scalar 
multiple of the discretized form of the Laplacian obtained by using second centered 
differences and a uniform mesh. In this case, (24) is the discrete Poisson equation. 
There are a variety of methods available for the solution of this system in addition 
to those methods for the inner system of the transformed Jacobi [9]. As with the 
transformed Jacobi, these methods vectorize and parallelize naturally. 

Among all the methods reviewed above, the ones with the fewest disadvantages 
are the transformed Jacobi and the scaled Laplacian. 

2.3. Convergence Results 

We present two results about the convergence of the transformed Jacobi and the 
scaled Laplacian methods. The first result applies to both methods, and the latter 
applies only to the scaled Laplacian method. 

THEOREM 2.3.1. If Q and Q’ are diagonally dominant, and either is strictly 
diagonally dominant, then the transformed Jacobi and scaled Laplacian methods are 
convergent. 

Proof: See [26, 271. 

The next two results give much less restrictive conditions for the convergence of 
the scaled Laplacian method. First we show that the scaled Laplacian method can 
be used to solve the dual variable system for all problems which can be solved by 
any variant of conjugate gradient. 

THEOREM 2.3.2. If Q is PDR, then the scaled-Laplacian iteration matrix, Gd, is 
convergent for d sufficiently large. 

Proof: See [27]. 
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Next, we note that the scaled Laplacian method can be used to solved an even 
larger class of problems than those characterized by the condition that Q is PDR. 

THEOREM 2.3.3. For uniform mesh spacing, the scaled-Laplacian method, with 
da IlQDllmr is convergent to the solution of the dual variable system whenever 
(Q + [d/(d- l)] . Z)T is strictly diagonally dominant. 

Proof. See [26, 271. 

Note that Q need not be PDR to satisfy the hypotheses of Theorem 2.3.3. For 
example, if Q is given by 

1 -2 
Q= -1 1 ' [ 1 then 

Thus, Q is not PDR. However, (Q + [d/(d - 1 )] . Z)T ’ is strictly diagonally dominant 
for any d> 1. Also, note that the hypotheses of Theorem 2.3.3 are easier to verify 
than those of Theorem 2.3.2; the result is of greater practical utility than 
Theorems 2.3.2 and 2.1.1. 

Under these hypotheses. Q = I+ AM, where M is given in Appendix A; thus d> 
( 1 + At . m,i) > 1 for all i. Therefore, d/(d- 1) > 1 always because the denominator 
is always positive. A comparison of Theorem 2.1.2 (or 2.3.1) with Theorem 2.3.3 
shows that the bound on the time step given by the latter is more than twice 
the bound required by the former for guaranteeing invertibility of CTQC in the 
uniform mesh spacing case. Indeed, if At, :=sup(dtI (Z+ dtM)T is diagonally 
dominant}, then sup{dt I (I+ dtM)T + [d/(d- l)] .I is diagonally dominant} = 
dt,(2d- l)/(d- 1) > 2dt,. Notice that when d is only slightly larger than one, 
(2d- l)/(d- 1)=2+ l/(d- 1) can be much larger than 2. 

Q is an M-matrix and (dl- Q) Z (Qb - Q) k 0 for d> IIQDllm. Therefore, 
d-‘(dl- Q) has a larger spectral radius than that of Q;‘(Qo - Q) [30, pp. 90-911; 
hence its asymptotic convergence rate is slower. Since these are the untransformed 
versions of the scaled Laplacian and transformed Jacobi, one would expect the 
convergence rate of the transformed Jacobi to be higher than that of the scaled 
Laplacian. In spite of the fact that it has not yet been proven, numerical 
experiments have always borne this out. This is the main reason that the trans- 
formed Jacobi was implemented in the DUALIT computer code instead of the 
scaled Laplacian. 

2.4. Acceleration Techniques 

The convergence rate of the basic methods discussed in Section 2.2 can be greatly 
enhanced by applying acceleration methods. Though many techniques are 
available, [ 17, Chap. 31, we consider only the polynomial acceleration technique 
known as second-order Richardson. This technique has a dramatic effect on the 
converge of the transformed Jacobi method. The dual variable system is denoted 

Bx=b, (25) 
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where for the kth time step B = CTQ”C is the (L-N) x (L-N) coefficient matrix. 
We can write B = S- (S- B), where S is a nonsingular matrix called the splitting 
matrix. Suppose that the iterative method for solving (25) is given by 

X n+‘=Gx”+k, (26) 

where k = S -‘b and G = S. ‘(S - B) = I- S -‘B is the iteration matrix. Using G, 
one may write down the so-called related system 

(I- G)x = k (27) 

which has the same solution as (25). 
Polynomial acceleration techniques attempt to increase the rate of convergence of 

an iterative process by creating, from the sequence {x”}, a new sequence of iterates, 
(w”}, which approaches the solution faster than the original sequence. The new 
sequence, {w”}, is defined by 

n 
wn = C a,,kxn, for n>O, where i a,,=l,forn>O. (28) 

k=O 

The error vectors are given by 

k=O 

e”,. = w” - x and e;=x”-x, (29) 

where x is the solution of (25). From (26) and (27), ez+’ =x”+’ -x = 
G(x”-x)= . . . =G”+l(xo-~)=G”+‘e~; then from (28), 

e”,. = P,(G)et., 

where P,(G)=a,oZ+a,,lG+ ... +a”,:G”. 
Since polynomial acceleration in this form uses large amounts of both storage 

and computations, simpler forms, especially three-term recursions, are used 
whenever possible. As shown in Hageman and Young [ 171, if {I’,} satisfies 

PO(X) = 1, 

P,(x) = c,x - c, + 1, 

then the polynomial acceleration method (28) may be written as 

w’=c,(Gw’+k)+(l-cI)wo, 
(30) 

W n+l=r 
n+l [c,+,(Gw”+k)+(l-c,+,)w”]+(l-r,+,)w”-r 

for n = 1, 2, 3, . . . . Many methods have such three-term recursions; most notable are 
the SOR, second-order Richardson, Chebyschev, and conjugate-gradient (CG) 
methods. 
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The second-order Richardson extrapolation is a polynomial acceleration method 
obtained by setting Y, = o and c, = 1 for n > 0. This yields 

W “+‘=w[Gw”+k]+(l-m)w”+ (31) 

It was shown by Golub and Varga [ 131, that (31) is identical to SOR applied to 
the system: 

[:I=[: :][z]+[:]. (37) 

When B is PDS, the optimal value for w is known to be 

The Richardson extrapolation method (31) requires only one extra vector of 
storage over the basic method and very little extra computation. The convergence 
rate obtained is of SOR-type but it vectorizes without the need to reorder the 
variables as is required for SOR in many applications. If G were symmetric, the 
coefficient matrix of system (32) would be symmetric. By Varga [30, Theorem 4.43, 
the spectral radius of the SOR iteration matrix for (32) would be (mb - 1). Thus the 
asymptotic convergence rate for accelerated method (31) is R, = -h(mb - 1). 
Since (wb - 1) is strictly decreasing with decreasing S(G), the best choice of G is the 
one with the smallest spectral radius. From the discussion in Section 2.3, we expect 
G, to have smaller spectral radius than Cd. When the eigenvalues of G* are not real 
and non-negative, little is known about the convergence rate of SOR applied to 
(32). 

The Richardson extrapolation scheme for both the scaled Laplacian and trans- 
formed Jacobi can be derived directly from the corresponding regular splittings 
for Q. For a discretely divergence free sequence {w”}, wn = Cy” for a unique 
y” E RLpN. For the transformed Jacobi method, we begin with the Jacobi iteration 
arising from the associated regular splitting (17) for Q: 

V n+l =Jv”+b*, J=Q$F. 

Apply second-order Richardson extrapolation to accelerate: 

W ‘+‘=w[Jw”+k] + (1 -m)wn-‘. 

This can be rewritten as 

QDW “+‘=w[Fw”+Q,k]+(l--)QDwn-‘. 

Take the discrete curl by multiplying by CT to obtain 

CTQDw”+ ’ = o[CTFw”+k*]+(l-o)CTQ,w”+‘, 
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where k* = CTQ,k. Replace mass velocities by dual variables to obtain 

CrQ,Cyntl = w[CTFCy” + k*] + (1 -w) CTQ,Cy”- ‘. 

Multiply by (C’QoC))‘: 

Y n+l =w[G,y”+k] +(l -o)y” ‘. 

This shows that the Richardson accelerated transformed Jacobi is just the dual 
variable transformation of the Richardson accelerated Jacobi. The derivation for the 
scaled Laplacian is similar. 

3. NUMERICAL RESULTS 

The computer code DUALIT is a highly optimized and vectorized program 
which solves the incompressible Navier-Stokes problems described in Section 1.1. 
On a given time step, once the particular solution has been found and the 
coefficient matrix of the momentum equation formed, the solver carries out the 
transformed Jacobi iteration to find the vector of dual variables. The solver uses 
second-order Richardson extrapolation to 
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1 .c 

No-slip 

u = -1.0, 
v = 0.0 
I 

No-slip 

FIG. 4. Driven cavity. 

No-slip 

Boundary conditions: no-slip walls: x = 0, x = 1, 0 < y < 1; and y= 0, 
0-cx-c 1; for t>O. 

Specified velocity: 

u(x, 1, t) = - 1.0 for O<x<l, t30 

u(x, 1, t) = 0.0 for O<x< 1, t>O. 

Fluid properties: density, p = 1.0; viscosity, p = 0.025. 

With these specifications, the Reynold’s number is 40 and the equations reduce to 

“+&=() 
ax ay 

au au au 
z+~x+~-=O.Ozsdu-2 

ay 

av au au 
dt+~~+~-=0.025Av-!? 

ay ay 

TABLE II 

Driven Cavity Problem 

Size Outer Inner Time in 
NxN iterations iterations seconds 

10 x 10 12 338 0.39 
20x20 135 1358 1.61 
30x30 201 2879 4.04 
40X40 205 4843 1.12 
50x50 254 5579 12.65 
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TABLE III 

Driven Cavity Data from CRAY/XMP48 

30 x 30 Cavity, optimal Q = 1.38 

Step 1 2 3 4 5 6 I 8 9 10 

10’. Drop 2.49 1.87 1.74 16.6 17.4 5.85 4.79 7.3 1 5.87 4.70 
Outer 89 59 39 2 2 2 2 2 2 2 
Inner 1348 924 474 0 0 43 42 2 44 2 
Time 0.940 0.687 0.498 0.264 0.264 0.279 0.278 0.265 0.278 0.278 
Total time: 4.039s 

40 x 40 Cavity, optimal 0 = 1.41 

Step I 2 3 4 5 6 7 8 9 10 

10’ Drop 4.42 3.85 304 288 239 2.38 7.02 7.53 2.36 1.81 
Outer 119 70 2 2 2 2 2 2 2 2 
Inner 2491 1346 1 2 3 879 0 0 61 60 
Time 2.242 1.484 0.476 0.471 1.12 0.467 0.469 0.469 0.501 0.499 
Total time: 7.72s 

For the test runs, the region was overlaid with 10 x 10, 20 x 20, 30 x 30, 40 x 40, 
and 50 x 50 grids with a uniform mesh gauge. A time step of 20.0 s was chosen for 
all problems. The tolerance for the convergence of the inner iteration was set at 
lop6 (both the absolute and relative error tolerances). RSCG was used to solve the 
inner system. The solutions produced by DUALIT and DUVAL [lo] agreed to 
four significant places. 

The results of these test runs are summarized in Table II. Outer is the number of 
outer iterations taken by the accelerated transformed Jacobi method to attain the 
convergence condition. Inner is the cumulative number of inner iterations used to 
solve the inner system on all the transformed Jacobi iterations. Time is the number 

Sensor 

,HUll 

Spoiler 

ttt 

FIG. 5. The aircraft cavity. 
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of seconds required to complete the computations of 10 time steps including input, 
initialization, and computations done before the time loop. More detailed informa- 
tion is given in Table III for the cases of N= 30 and N= 40. 

3.2. Aircraft Cavity 

In [ 123, a simulation of the flow of air along the exterior of an aircraft and into 
an opening in the fuselage is analyzed numerically. Inside the cavity, there is a 
sensor which is treated as a blockage. In front of the opening in the fuselage is a 
ramp or spoiler which causes the jetstream of air to shoot up over the opening and 
reduces the amount of flow into the cavity (see Fig. 5). The inlet velocities on the 
bottom of the region correspond to a free stream Mach number of 0.75 while 
pressures of 14.7 psi are specified at the outlet on the top of region. The walls of the 
cavity and sensor are no-slip walls. The DUALIT code cannot handle walls on the 
interior of the region; therefore, the fuselage, spoiler, and sensor are approximated 
by adding large friction factorsfi (see (4)) to the appropriate momentum equations 
to force the mass-velocities to be zero. 

The solutions achieved by DUALIT and DUVAL agree to two significant places 
throughout the transient. Velocity magnitude contours are given in Fig. 6 at 
time 25 s. From the picture, one can see the effectiveness of using friction factors to 
simulate the interior blockages. Figure 7 shows the streamlines of the flow at 25.0 s. 
As expected, the spoiler causes most of the air to stream up and over the opening. 
There is a small vortex just above and to the left of the sensor. 

CONTOURS REGION 

FIG. 6. Aircraft cavity velocity magnitude contours at 25.0 s. 
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FIG. 7. Aircraft cavity streamlines at 25.0 s. 

The data for the driven cavity problem indicate that the time required to com- 
plete 10 time steps is approximately a linear function of the number of variables. An 
experiment to see if this was indeed so was conducted with the more diffkult air- 
craft cavity problem. Three different sized grids were used: 30 x 30, 60 x 60, and 
70 x 70. A time step of 0.5 and convergence tolerance of 10m5 were used in all three 
runs. The results are given in Fig. 8 and the data for the three runs are given in 

AIRCRAFT CAVITY RUNTIMES 

FOR DUALIT 

0 852 3504 4790 

I NUMBER OF DUAL VARIABLES 

FIG. 8. DUALIT aircraft cavity runtime. 
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TABLE IV 

Aircraft Cavity Data 

Size 
Outer Inner 

w iterations iterations Time 

30x30 1.06 2142 26369 16.14 
60x60 1.03 2344 54806 80.62 
70x70 1.03 2775 59876 121.32 

Table IV. The curve shown in Fig. 8 is almost linear. However, no search was made 
for the optimal extrapolation parameter; so it is possible to improve the runtimes 
for the 60 x 60 and 70 x 70 problems. 

3.3. Comparisons of DUALIT with the Direct Solver DUVAL 

We now compare the performance DUALIT with the direct solver DUVAL, 
which uses an efficient frontal method to solve the same system of dual variables. 
Version 23 of DUVAL was described in Ref. [ 10,201 and is the version upon 
which the comparisons are based. 

Driven Cavity CPU TIMES 

for DUALIT and DUVAL23 on CRAYlXMP 

KEY 

I 0 81 361 841 1521 2401 
NUMBER OF DUAL VARIABLES 

FIG. 9. Comparison of DUALIT and DUVAL CPU times. 
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TABLE V 

Comparisons of DUALIT and DUVAL CPU Times 

Number of DUALIT DUVAL Ratio Ratio DUALIT CPU/ 
N variables CPU time CPU time DUVAL/DUALIT number of variables 

10 81 0.39 0.93 2. 4 0.0048 
20 361 1.61 8.08 5.0 0.0045 
30 841 4.01 28.16 6.9 0.0048 
40 1521 I.12 86.85 8.5 0.0050 
50 2401 12.65 N.A. N.A. 0.0053 

For an Nx N discrete mesh of cells, the formula for the memory requirements of 
DUALIT is O(39. N2 + 96.N), while the formula for DUVAL is 0(111 .N2 + 
194. N) + (3N3 Disk Storage). Thus DUALIT can solve a (1.7N) x (1.7N) problem 
in the same amount of internal memory (not counting peripherals) that DUVAL 
needs to solve an N x N problem. 

We now compare the execution time of the two codes on two sample problems. 
The comparison ignures the cost of disk I/O that is required by the frontal solver 
in DUVAL. 

AIRCRAFT CAVITY RUNTIMES 

10 TIME STEPS 

FIG. 10. DUALIT and DUVAL CPU time comparisons for the aircraft cavity problem 

I NUMBER OF DUAL VARIABLES 
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For the driven cavity problem, the convergence tolerances for DUALIT were 
lo-’ for both the inner and outer iterations. With these choices, the velocity fields 
produced by each code agree to four significant figures for the driven cavity 
problem. The codes were run for 10 time steps with output at the end of each time 
step. The comparisons of the execution times for DUVAL and DUALIT are given 
in Fig. 9. From Fig. 9, we note that DUALIT always uses less computer time than 
DUVAL to solve the same size driven cavity problem. Moreover, the ratio of 
DUVAL execution time to DUALIT execution time increases with the problem 
size. The data for Fig. 9 are collected in Table V. 

Finally, we compare the CPU times of DUALIT and DUVAL on the aircraft 
cavity problem (Fig. 10). Three problem sizes were used, 30 x 30, 60 x 60, and 
70 x 70; the data is accumulated in Table VI. The problems were run for 50 time 
steps and output was given at every tenth time step. Both the inner and outer 
tolerances were set to 1O-5 for DUALIT and both DUALIT and DUVAL used 
friction factors to model the blockages. With these settings, the velocity fields 
produced by the two codes agreed to two decimal places. In neither of the larger 
problems was the optimal extrapolation factor sought. 

3.4. Conclusions 

Several new iterative linear equation solvers have been developed for the solution 
of dual variable systems that arise from finite difference discretizations of the 2D 
incompressible Navier-Stokes problems. They have been shown to be convergent 
for a larger class of problems than any other known iterative method. The trans- 
formed Jacobi method has the optimal asymptotic convergence rate among the 
class of transformed regular splittings; this is the same rate as obtained with 
optimal transformed SOR. The new methods vectorize and parallelize in a natural 
manner. Finally, these new methods require less memory and computation time 
than the frontal method, which was previously the most efficient method for solving 
the dual variable system. 

TABLE VI 

Aircraft Cavity Data 

CRAY/XMP48 time 

NxN Outer Inners DUALIT DUVAL Ratio 

30x30 2142 26369 16.14 19.40 1.20 
60x60 2344 54806 80.62 212.91 3.39 
70x70 2715 59876 121.32 464.92 3.83 

581/96/l-7 



96 MESINA AND HALL 

APPENDIX A: THE FINITE DIFFERENCE EQUATIONS 

The discrete continuity equation is 

Uk+l -Uk+I 
f. J I,Jp 1 

Vk+l _ Vk+l 

+ 
1.J I 1.J = 0. 

Ax, AYJ 

Multiplying by Ax, Ay,, 

Ay,(U’;;’ - Uf,;~,)+Ax,(Vf,;’ - Vf’;,,)=O. (A.21 

Define PI I,,, =Ay, if w,=U,,~ and Ax, if w, = V,, J; then (A.2) can be written 
in matrix from as 

AD wk+l=sk 
1 (A.3) 

where the coefficient matrix A contains entries that are 1 - 1, or 0 and is the 
incidence matrix of an associated graph [2]. The right-hand side, sk, contains any 
nonzero boundary information. 

The following equation is the discretization of the horizontal momentum 
equation (2) associated with the flow in the x-direction across the vertical boundary 
on the right side of the (Z, J)th mesh box or flow cell: 

,yk+LUk 
J.J 

At LJ+iuf,Ji ~H(u~,J)(u~,~1-u~,:‘,)+(1-H(~‘;;J))(~’z~1-~l;~~,)] 

+ 1 “;JI 

uk+l-uk+l 

H(v’:,J) cd;;+ AyJ_ ,I,2 *-lsJ +(l-H(P:,)) 
uktl-uktl 

(A;;+ Ay:,+,& I 
uk+l 2uk+’ uk+l 

Ax,+,(Ax~~~x,tl),2-Ax,~~,+l+Ax,(Ax~~il:,t,),2 1 
[ 

@,k+ 1 

Xc1 (AYJ+AY 

I+ 1,J 

J+~NAYJ-~+~AYJ+AYJ+~) 

8Uk+’ 

-(AYJ+AYJ+,);:~YJ+AYJ-~) 

8Uk+’ 

+ (AYJ +AYJ- l)(AY:I:‘i ~AYJ + AyJ+ 1) 1 
pktl -pktl 

= (A:; + Ax,, ,)/2 
IsJ+l + (FI;+l),,J (A.4) 

where H( .) is the Heaviside operator that is one, if the argument is positive, and 
zero otherwise. 

The vertical momentum equation is similar. The matrix, Mk, contains the 
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coeffkients of new time-level velocities for the advection, viscous stress, and drag 
forces. The coefficient matrix for the pressures turns out to be &AT; see [27], 
where Dz is defined by (D2)m,m=2/(dx, + Ax,,,) if W, = U,,J, and (D&+= 
‘WY~ + AY,+ d if w, = VI,,. In matrix form, the discrete momentum equation is 

(I+ Mk)W k+1=D2ATpk+1+bl;. (A-5) 

Multiplying by D; ‘, 

e kZk+l=ATpk+l+b~, (A.6) 

where Qk=D;‘((Z+Mk)D;‘. 
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